


## **CSM040GT5 Hall-effect Current Sensor Series**



Closed loop current sensor based on the principle of Hall-effect. It can be used for measuring AC,DC,pulsed and mixed current.

| Electrical characteristics |                                    |                                       |           |           |           |      |
|----------------------------|------------------------------------|---------------------------------------|-----------|-----------|-----------|------|
|                            | Туре                               | CSM010GT5                             | CSM020GT5 | CSM025GT5 | CSM040GT5 |      |
| $I_{PN}$                   | Primary nominal input current      | 10                                    | 20        | 25        | 40        | A    |
| $I_P$                      | Measuring range of primary current | 0~±20                                 | 0~±30     | 0~±50     | 0~±80     | A    |
| $\mathbf{K}_{\mathbf{N}}$  | Conversion ratio                   | 1:1000                                | 1:1000    | 1:1000    | 1:1600    |      |
| $R_{IM}$                   | Internal measuring resistance      | 100±0.5%                              | 50±0.5%   | 50±0.5%   | 50±0.5%   | Ω    |
| V <sub>OUT</sub>           | Secondary nominal output voltage   | 0.625±0.5%                            |           |           |           | V    |
| $\mathbf{v}_{\mathbf{c}}$  | Supply voltage                     | +5(±5%)                               |           |           |           | V    |
| $I_{C}$                    | Current consumption                | $I_P = 0$ <20                         |           |           |           | mA   |
| $V_{D}$                    | Insulation voltage                 | AC/50Hz/1min 2.5                      |           |           |           | kV   |
| $\epsilon_{ m L}$          | Linearity                          | <0.1                                  |           |           |           | %FS  |
| X                          | Accuracy                           | $T_A=25$ °C $<\pm0.7$                 |           |           |           | %    |
| Vo                         | Zero offset voltage                | $I_{P}=0 T_{A}=25^{\circ}C$ 2.5 ±0.5% |           |           |           | V    |
| Vot                        | Thermal drift of $V_0$             | $I_P=0 T_A=-25\sim+85^{\circ}C$ <±0.5 |           |           |           | mV/℃ |
| di/dt                      | di/dt accurately followed          | >50                                   |           |           |           | A/μs |
| $T_R$                      | Response time                      | <500                                  |           |           |           | ns   |
| f                          | Frequency bandwidth(-1dB)          | DC~200                                |           |           |           | kHz  |
| T <sub>A</sub>             | Ambient operating temperature      | -25~+85                               |           |           |           | Ç    |
| $T_S$                      | Ambient storage temperature        | -40~+100                              |           |           |           | င    |
|                            | Standard                           | Q/3201CHGL02-2007                     |           |           |           |      |

## **Dimensions of drawing (mm)**



## 1.25V -3IPN -IPN 0 IPN 3IPN

Elucidation: 1:+5V 2:0V(GND) 3:VOUT

## Remarks

Incorrect connection may lead to the damage of the sensor.  $V_{OUT}$  is positive when the  $I_P$  flows in the direction of the arrow. Dynamic performance (di/dt and response time) are best with a primary bar in the center of the through-hole.