
R CSM100LA Hall-effect Current Sensor Series

Closed loop current sensor based on the principle of Hall-effect. It can be used for measuring AC,DC,pulsed and mixed current.

Electrical characteristics				
	Туре	CSM050LA	CSM100LA	
I _{PN}	Primary nominal input current	50	100	Α
I _P	Measuring range of primary current	0~±75	0~±150	Α
I _{SN}	Secondary nominal output current	50	50	mA
K _N	Conversion ratio	1:1000	1:2000	
R _M	Measuring resistance ($V_C = \pm 15V$)	I _P =±50A: 50-160	I _P =±100A: 0-110	Ω
	(V _C =±15V)	I _P =±75A: 50-90	I _P =±150A: 0-33	Ω
Vc	Supply voltage	±12~±15(±5%)		V
I _C	Current consumption	V _C =±15V 10+Is		mA
VD	Insulation voltage	AC/50Hz/1min 2.5		kV
ε _L	Linearity	<0.2		%FS
X	Accuracy	$T_A = 25^{\circ}C V_C = \pm 15V < \pm 0.7$		%
Io	Zero offset current	T _A =25°C <±0.2		mA
I _{OM}	Residual current	$I_{P} \rightarrow 0$ <±0.15		mA
I _{OT}	Thermal drift of I_0	$I_P=0 T_A=-25 + 85^{\circ}C < \pm 0.5$		mA
T _R	Response time	<1		μs
f	Frequency bandwidth(-1dB)	DC~100		kHz
T _A	Ambient operating temperature	-25~+85		ĉ
Ts	Ambient storage temperature	-40~+100		ĉ
R _s	Secondary coil resistance($T_A=25^{\circ}C$)	34	112	Ω
	Standard	Q/3201CHGL02-2007		
Dimen	Dimensions of drawing (mm) Connection			

Incorrect connection may lead to the damage of the sensor. I_{SN} is positive when the I_P flows in the direction of the arrow. Dynamic performance (di/dt and response time) are best with a primary bar in the center of the through-hole.