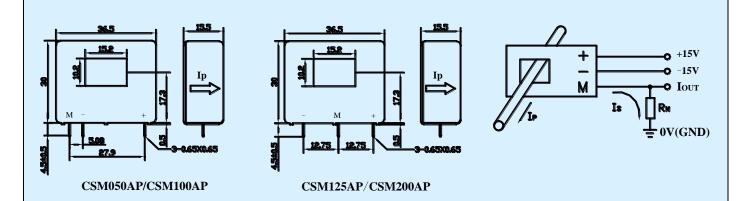


CSM200AP Hall-effect Current Sensor Series



Closed loop current sensor based on the principle of Hall-effect. It can be used for measuring AC,DC,pulsed and mixed current.

Electi	rical characteristics					
	Туре	CSM050AP	CSM100AP	CSM125AP	CSM200AP	
I_{PN}	Primary nominal input current	50	100	125	200	A
I_P	Measuring range of primary current	0~±150	0~±300	0~±375	0~±600	A
I_{SN}	Secondary nominal output current	50±0.5%	50±0.5%	125±0.5%	100±0.5%	mA
$\mathbf{K}_{\mathbf{N}}$	Conversion ratio	1:1000	1:2000	1:1000	1:2000	
$\mathbf{R}_{\mathbf{M}}$	Measuring resistance (V _C =±18V)	0~100	0~68	0~15	0~12	Ω
$\mathbf{v}_{\mathbf{c}}$	Supply voltage	±12~±18(±5%)				v
I_{C}	Current consumption	$V_C = \pm 15V$ 10+Is				mA
V_D	Insulation voltage	AC/50Hz/1min 3				kV
$\epsilon_{ m L}$	Linearity	<0.2				%FS
X	Accuracy	T _A =25℃ <±0.7				%
Io	Zero offset current	T _A =25℃ <±0.2				mA
I _{OM}	Residual current	I _P →0 <±0.15				mA
I _{OT}	Thermal drift of I_0	$I_{P}=0$ $T_{A}=-25\sim+85^{\circ}C$ $\leq \pm 0.005$				mA/℃
T_R	Response time	<1				μs
f	Frequency bandwidth(-3dB)	DC~200				kHz
T _A	Ambient operating temperature	-25~+85				°C
T_S	Ambient storage temperature	-40~+100				င
R_S	Secondary coil resistance(T _A =25°C)	30	45	30	45	Ω
	Standard	Q/3201CHGL02-2007				

Dimensions of drawing (mm)

Connection

Remarks

Incorrect connection may lead to the damage of the sensor. I_{SN} is positive when the I_P flows in the direction of the arrow.

Dynamic performance (di/dt and response time) are best with a primary bar in the center of the through-hole.