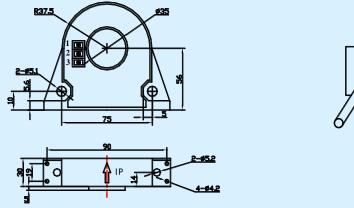
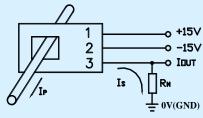


CSM500LTB Hall-effect Current Sensor Series




Closed loop current sensor based on the principle of Hall-effect. It can be used for measuring AC,DC,pulsed and mixed current.

Diccti	rical characteristics	CCM 2001 TD	CCM 5001 TD	
	Туре	CSM300LTB	CSM500LTB	
I_{PN}	Primary nominal input current	300	500	A
I_P	Measuring range of primary current	0~±500	0~±800	A
I_{SN}	Secondary nominal output current	100±0.5%	100±0.5%	mA
$\mathbf{K}_{\mathbf{N}}$	Conversion ratio	1:3000	1:5000	
R_{M}	Measuring resistance (V _C =±15V)	I _{PN} =±300 0~95	I _{PN} =±500 0~62	Ω
	$(V_C = \pm 15V)$	I _P =±500 0~40	I _P =±800 0~11	Ω
	$(V_C = \pm 18V)$	I _{PN} =±300 0~122	I _{PN} =±500 0~88	Ω
	$(\mathbf{V_{C}}=\pm 18\mathbf{V})$	I _P =±500 0~58	I _P =±800 0~30	Ω
$\mathbf{V}_{\mathbf{C}}$	Supply voltage	±15~±18(±5%)		V
I_{C}	Current consumption	$V_{C}=\pm 15V$ 28+Is		mA
V_D	Insulation voltage	AC/50Hz/1min 6		kV
$\epsilon_{ m L}$	Linearity	<0.1		%FS
X	Accuracy	$T_A=25^{\circ}C$ <±0.7		%
$\mathbf{I_0}$	Zero offset current	T _A =25°C <±0.25		mA
I_{OM}	Residual current	$I_{P} \rightarrow 0$ <±0.2		mA
I _{OT}	Thermal drift of I_0	$I_P=0$ $T_A=-25\sim+85^{\circ}C$ <±0.5		mA
T _R	Response time	<1		μs
di/dt	di/dt accurately followed	>100		A/μs
f	Frequency bandwidth(-3dB)	DC~100		kHz
T _A	Ambient operating temperature	-25~+85		င
T_{S}	Ambient storage temperature	-40~+100		င
R_{S}	Secondary coil resistance(T _A =25°C)	36	64	Ω
	Standard	Q/3201CHGL02-2007		

Dimensions of drawing (mm)

Connection

Elucidation: 1:+15V 2:-15V 3:I_{0UT}

Remarks

Incorrect connection may lead to the damage of the sensor. I_{SN} is positive when the I_P flows in the direction of the arrow.

Dynamic performance (di/dt and response time) are best with a primary bar in the center of the through-hole.