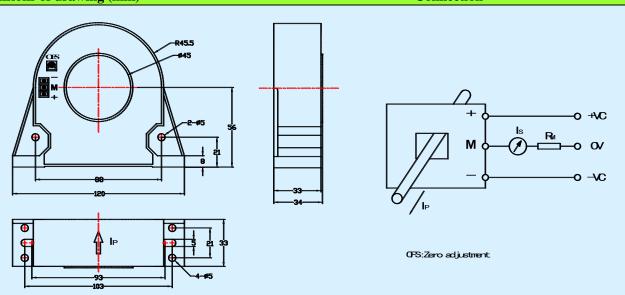


CSM1000LTC Hall-effect Current Sensor Series



Closed loop current sensor based on the principle of Hall-effect. It can be used for measuring AC, DC, pulsed and mixed current.

Electrical characteristics			
	Туре	CSM1000LTC	
I_{PN}	Primary nominal input current(rms)	1000	A
I_P	Measuring range of primary current(DC)	0∼±2000	A
I_{SN}	Secondary nominal output current	200	mA
$\mathbf{K}_{\mathbf{N}}$	Conversion ratio	1:5000	
$\mathbf{R}_{\mathbf{M}}$	Measuring resistance (V _C =±15V)	$V_C = \pm 15V$ $I_P = \pm 1000$ 0~30	Ω
	$(V_C = \pm 15V)$	$V_C = \pm 15V$ $I_P = \pm 1200$ 0~20	Ω
	$(V_C = \pm 18V)$	$V_C = \pm 24V$ $I_P = \pm 1000$ 0~75	Ω
	$(V_C = \pm 18V)$	$V_C = \pm 24V$ $I_P = \pm 2000$ 0~15	Ω
$\mathbf{V}_{\mathbf{C}}$	Supply voltage	±15~±24(±5%)	V
I_{C}	Current consumption	$V_{C}=\pm 24V$ 18+Is	mA
V_D	Insulation voltage	AC/50Hz/1min 6	kV
$\epsilon_{ m L}$	Linearity	<0.1	%FS
X	Accuracy	$T_A=25$ °C <±0.7	%
I_0	Zero offset current	T _A =25℃ <±0.25	mA
I_{OT}	Thermal drift of I_0	$I_{P}=0$ $T_{A}=-25\sim+85^{\circ}C$ $<\pm0.005$	mA/℃
T_r	Response time	90%I _{PN} <1	μs
di/dt	di/dt accurately followed	>100	A/μs
f	Frequency bandwidth(-1dB)	DC~100	kHz
T_A	Ambient operating temperature	-25~+85	င
T_S	Ambient storage temperature	-40~+100	င
R_S	Secondary coil resistance(T _A =25°C)	37	Ω
	Standard	Q/320115QHKJ01-2010	

Dimensions of drawing (mm)

Connection

Remarks

Incorrect connection may lead to the damage of the sensor. I_{SN} is positive when the I_P flows in the direction of the arrow.

Dynamic performance (di/dt and response time) are best with a primary bar in the center of the through-hole.