R CSM025A Hall-effect Current Sensor Series

Closed loop current sensor based on the principle of Hall-effect. It can be used for measuring AC,DC,pulsed and mixed current.

Electrical characteristics							
	Туре	CSM025A					
I _{PN}	Primary nominal input current	25					
I _P	Measuring range of primary current	0~±36					
I _{SN}	Secondary nominal output current	25					
K _N	Conversion ratio	1-2-3-4-5:1000					
R _M	Measuring resistance $(V_C = \pm 15V)$	$I_{PN}=\pm 25A$ 100~460 $I_P=\pm 36A$ 100~304	R _M				
Vc	Supply voltage	±15(±5%)					
I _C	Current consumption	V _C =±15V 10+Is					
VD	Insulation voltage	AC/50Hz/1min 2.5					
ε _L	Linearity	<0.2					
X	Accuracy	$T_{A}=25^{\circ}C V_{C}=\pm 15V$ <=±0.7					
Io	Zero offset current	T _A =25°C <±0.15	mA				
I _{OM}	Residual current	$I_{P} \rightarrow 0$ <±0.15					
I _{OT}	Thermal drift of I_0	$I_{P}=0$ $T_{A}=-25 \approx +85^{\circ}C$ $<\pm 0.5$					
T _R	Response time	<1					
di/dt	di/dt accurately followed	>50					
f	Frequency bandwidth(-1dB)	DC~100					
TA	Ambient operating temperature	-25~+85					
Ts	Ambient storage temperature	-40~+100					
R _s	Secondary coil resistance($T_A = 85^{\circ}C$)	50 50					
	Standard	Q/3201CHGL02-2007					
Dime	nsions of drawing (mm)	Connection					

Conversion ratio	Ipn(A)	IP(A)	Isn(mA)	$R_p(m \Omega)$	Primary connection
1 : 1000	25	36	25	0. 3	5 0 0 0 0 1 IN OUT 6 0 0 0 0 10
2:1000	12	18	24	1.1	5 0 0 0 0 1 IN OUT 6 0 0 0 0 0 10
3:1000	8	12	24	2. 5	5 0-0 0 0-01 IN OUT 6 0-0 0 0-010
4:1000	6	9	24	4. 4	5 Q Q Q Q 1 IN OUT 6 Q Q Q 0 10
5:1000	5	7	25	6. 3	5 0 0 0 0 1 IN OUT 6 0 0 0 0 0 10

Remarks

Incorrect connection may lead to the damage of the sensor.

 I_{SN} is positive when the I_{P} flows in the direction of the arrow.