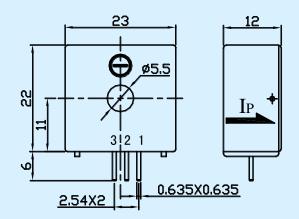
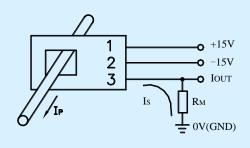


CSM040G Hall-effect Current Sensor Series




Closed loop current sensor based on the principle of Hall-effect. It can be used for measuring AC,DC,pulsed and mixed current.

Electrical characteristics						
	Туре	CSM010G	CSM020G	CSM025G	CSM040G	
I_{PN}	Primary nominal input current	10	20	25	40	A
I_P	Measuring range of primary current	0~±20	0~±30	0~±50	0~±80	A
I_{SN}	Secondary nominal output current	10	20	25	25	mA
$\mathbf{K}_{\mathbf{N}}$	Conversion ratio	1:1000	1:1000	1:1000	1:1600	
R_{M}	Measuring resistance (V_C =±15V/ I_{PN})	1230(max)	594(max)	467(max)	420(max)	Ω
$V_{\rm C}$	Supply voltage	±12~±15(±5%)				V
I_{C}	Current consumption	$V_C = \pm 15V$ 10+Is				mA
V_{D}	Insulation voltage	AC/50Hz/1min 2.5				kV
$\epsilon_{ m L}$	Linearity	<0.1				%FS
X	Accuracy	T _A =25℃ <±0.7				%
I_0	Zero offset current	$T_A=25$ °C $<\pm0.15$				mA
I_{OM}	Residual current	$I_{P}\rightarrow 0$ <±0.15				mA
I _{OT}	Thermal drift of \mathbf{I}_0	$I_{P}=0$ $T_{A}=-25\sim+85^{\circ}C$ $<\pm0.5$				mA
T_R	Response time	<500				ns
di/dt	di/dt accurately followed	>50				A/μs
f	Frequency bandwidth(-1dB)	DC~200				kHz
T _A	Ambient operating temperature	-25~+85				°C
T_{S}	Ambient storage temperature	-40~+100				င
R_{S}	Secondary coil resistance(T _A =25°C)	43	43	43	90	Ω
	Standard	Q/3201CHGL02-2007				

Dimensions of drawing (mm)

Connection

Elucidation: 1:+15V 2:-15V 3:I_{OUT}

Remarks

Incorrect connection may lead to the damage of the sensor. I_{SN} is positive when the I_P flows in the direction of the arrow.

Dynamic performance (di/dt and response time) are best with a primary bar in the center of the through-hole.