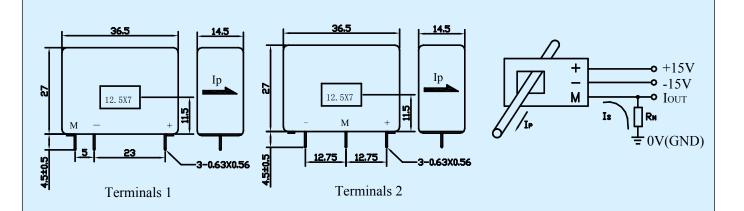


CSM150LA Hall-effect Current Sensor



Closed loop current sensor based on the principle of Hall-effect. It can be used for measuring AC,DC,pulsed and mixed current.

Electrical characteristics			
	Туре	CSM150LA	
I_{PN}	Primary nominal input current	150	A
I_P	Measuring range of primary current	0~±150	A
I_{SN}	Secondary nominal output current	75	mA
$\mathbf{K}_{\mathbf{N}}$	Conversion ratio	1:2000	
$\mathbf{R}_{\mathbf{M}}$	Measuring resistance	$V_C = \pm 15V I_P = \pm 150A 0-33$	Ω
V_{C}	Supply voltage	±15(±5%)	V
I_{C}	Current consumption	$V_C=\pm 15V$ 10+Is	mA
$\mathbf{V}_{\mathbf{D}}$	Insulation voltage	AC/50Hz/1min 2.5	kV
$\epsilon_{ m L}$	Linearity	<0.2	%FS
X	Accuracy	$T_A=25^{\circ}C V_C=\pm 15V$ <=0.7	%
Io	Zero offset current	T _A =25℃ <±0.2	mA
I _{OM}	Residual current	I _P →0 <±0.15	mA
Iot	Thermal drift of I ₀	$I_P=0 T_A=-25\sim+85^{\circ}C$ <±0.5	mA
T_{R}	Response time	<1	μs
f	Frequency bandwidth(-1dB)	DC~100	kHz
T_A	Ambient operating temperature	-25~+85	r
Ts	Ambient storage temperature	-40~+100	C
Rs	Secondary coil resistance(T _A =25°C)	112	Ω
m	Mass	19	g
	Standard	Q/320115QHKJ01-2013	

Dimensions of drawing (mm)

Connection

Remarks

- ·Incorrect connection may lead to the damage of the sensor. I_{SN} is positive when the I_P flows in the direction of the arrow.
- $\cdot Dynamic\ performance\ (di/dt\ and\ response\ time)\ are\ best\ with\ a\ primary\ bar\ in\ the\ center\ of\ the\ through-hole.$