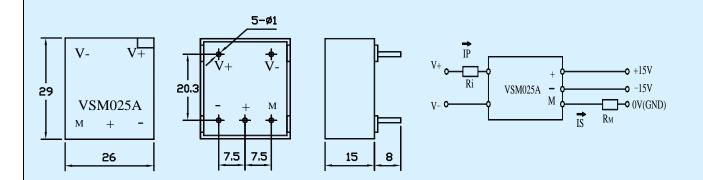


VSM025A Hall-effect Voltage Sensor Series



Closed loop voltage sensor based on the principle of Hall-effect. It can be used for measuring alternating, direct, pulsed and mixed voltage.

Electrical characteristics				
	Туре	VSM025A		
I_{PN}	Primary nominal input current	10		mA
I_P	Measuring range of primary current	0~±14		mA
I_{SN}	Secondary nominal output current	25		mA
$\mathbf{K}_{\mathbf{N}}$	Conversion ratio	2500:1000		
$\mathbf{R}_{\mathbf{M}}$	Measuring resistance $(V_C=\pm 12V)$	$I_{PN} = \pm 10 \text{mA}$ 30~350	$I_P = \pm 14 \text{mA}$ 30~235	$\mathbf{R}_{\mathbf{M}}$
	$(V_C = \pm 15V)$	$I_{PN} = \pm 10 \text{mA}$ 100~460	$I_P = \pm 14 \text{mA}$ 100~315	
$\mathbf{V}_{\mathbf{C}}$	Supply voltage	±12~±15(±5%)		V
I_{C}	Current consumption	$V_C = \pm 15V$ 10+Is		mA
V_{D}	Insulation voltage	AC/50Hz/1min 2.5		kV
$\epsilon_{ m L}$	Linearity	<0.2		%FS
X	Accuracy	$T_A = 25$ °C $V_C = \pm 15$ V ± 0.8		%
Io	Zero offset current	T _A =25℃ <±0.15		mA
I _{OT}	Thermal drift of \mathbf{I}_0	$I_P=0$ $T_A=-25\sim+85$ °C $<\pm0.35$		mA
T_R	Response time	90% of V _{PN} <40		μs
T_A	Ambient operating temperature	-25~+85		${\mathfrak C}$
T_S	Ambient storage temperature	-40~+100		°C
R_P	Primary coil resistance	T _A =25°C 190		Ω
\mathbf{R}_{S}	Secondary coil resistance	T _A =85°C 55		Ω
	Standard	Q/3201CHGL02-2007		

Dimensions of drawing (mm)

Connection

Elucidation: +:+15V -:-15V M:I_{out}

Remarks

Incorrect connection may lead to the damage of the sensor.

 I_{SN} is positive when the I_{P} flows in the direction of the arrow.